## **SHC Vancomycin Dosing Guide**

- A: Initial dosing considerations
- B. Pharmacodynamic Targets: goal AUC and troughs
- C. Loading dose
- D: Initial Vancomycin Maintenance Dosing and Serum Concentration Monitoring
- E: Dose Revisions
- F: Intermittent Hemodialysis Dosing Algorithms
- G: PK equations

### A. Initial Dosing Considerations

- 1. Review the following prior to initiation of therapy:
  - a. Indication, relevant and pending microbial culture(s)
  - b. Age, gender, height, weight, BMI
  - c. Renal replacement therapy
  - d. Special populations (obese, elderly, severely malnourished [BMI<16], amputees, pregnancy)
  - e. Prior vancomycin dosing history (if applicable)
  - f. Potential drug interactions
  - g. Serum creatinine (SCr), urine output (if available), creatinine clearance (CrCl)
    - Calculate CrCl using the Cockcroft-Gault equation (Figure 1)
      - a) Elderly or severely malnourished: rounding SCr up is associated with underestimation of CrCl- clinical discretion advised [Smythe 1994, Young 2017, Barber 2016, Winter 2012]
      - b) Use ideal body weight (IBW) for non-obese patients
      - c) Use adjusted body weight (ABW) for obese patients [total body weight (TBW)  $\geq$ 20% of IBW or BMI  $\geq$ 30 kg/m²]
      - d) Use total body weight (TBW) if TBW < IBW

#### Figure 1. Cockroft-Gault Equation

| Figure 1. Cockroit-Gault Equation                                                            |                                                                                           |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| $CrCl\left(\frac{ml}{min}\right) = (140 - age) \times IBW \times (0.85 \text{ for females})$ | IBW (male) = $50 \text{ kg} + (2.3 \text{ x height in})$<br>inches > $60 \text{ inches}$  |
| SCr x 72                                                                                     | IBW (female) = 45 kg + (2.3 x height inches > 60 inches) ABW (kg) = IBW + 0.4 (TBW – IBW) |

### h. Adverse Effects

- i. Red Man Syndrome is characterized by hypotension and/or a maculopapular rash appearing on the face, neck, trunk, and/or upper extremities.
- ii. If this occurs, pharmacist may slow the infusion rate (e.g. to 90-120 mins per 1 gm.) ± increase the dilution volume upon provider request ± recommend diphenhydramine 25-50mg premedication to the provider

## B. Pharmacodynamic Targets: goal AUC and troughs

| Indication                                                                                                                                                                                                                                                           | Target PD Index    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Most indications                                                                                                                                                                                                                                                     |                    |
| AUC-based protocol                                                                                                                                                                                                                                                   | AUC 400-700        |
| Trough-based protocol (dialysis, dose-by-level)                                                                                                                                                                                                                      | Trough ~15 (10-20) |
| Meningitis (empiric or definitive)                                                                                                                                                                                                                                   |                    |
| MRSA infections with vanco MIC = 2                                                                                                                                                                                                                                   |                    |
| AUC-based protocol                                                                                                                                                                                                                                                   | AUC 600-800        |
| Trough-based protocol (dialysis, dose-by-level)                                                                                                                                                                                                                      | Trough 15-20       |
| <ul> <li>In general, goal AUC/MIC ≥ 400 for S.aureus</li> <li>Monitor closely with trough &gt; 15 or AUC &gt; 700: increased risk of nephrotoxicity</li> <li>Vancomycin may be continued in clinically responding patients with MRSA w/vancomycin MIC = 2</li> </ul> |                    |

Exclusions from AUC-based dosing: rapidly fluctuating SCr, AKI (see section D footnote), renal replacement therapy

## C: Loading dose

### I. Purpose:

Ensures (Area Under Curve)/(Minimum Inhibitor Concentration) of >400 mcg-h/mL is achieved on day 1 of therapy for bacterial killing in in vitro and clinical outcomes in vivo studies

### II. Targeted populations:

Preferred in <u>seriously ill</u> (e.g. severe sepsis or septic shock requiring coverage for S. aureus)

## III. Standard load for patients with normal renal function: 25-30mg/kg TBW

| Patient Weight | Standard Loading Dose<br>~25 mg/kg TBW | Modified Loading Dose 15-20 mg/kg TBW  Obese (BMI ≥ 30) CrCL < 30 or AKI, IHD, CRRT, unavailable Scr in emergent situations (e.g code sepsis or ED) |
|----------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 36 – 45 kg     | 1,000 mg x 1                           | 750 mg x 1                                                                                                                                          |
| 46 – 55 kg     | 1,250 mg x 1                           | 1,000 mg x 1                                                                                                                                        |
| 56 – 65 kg     | 1,500 mg x 1                           | 1,250 mg x 1                                                                                                                                        |
| 66 – 75 kg     | 1,750 mg x1                            | 1,500 mg x 1                                                                                                                                        |
| 76 – 120 kg    | 2,000 mg x 1                           | 1,750 mg x1                                                                                                                                         |
| > 120 kg       | 2,000 mg x 1                           | 2,000 mg x 1                                                                                                                                        |

<sup>\*</sup>Time maintenance dose start based on renal function: e.g. wait 24h to start maintenance regimen if CrCl = 30 Use total body weight (TBW); Round doses to nearest 250mg. Infuse each 1000mg over 60 minutes.

# D: Initial Vancomycin Maintenance Dosing and Initial/Repeat Monitoring

- I. Round doses to nearest 250mg
- II. Maximum dose: 2gm per dose and 4.5g per 24h initially (including load)
- III. Repeat Vancomycin Levels
  - **A.** After the target AUC or trough level is achieved at steady state, trough levels should be checked every 2 to 5 days until completion of therapy or discharge. Check peak/trough after any dose initiation/change.
    - i. Levels should be checked sooner when clinically warranted (i.e.: change in clinical status or renal function, concern of accumulation/supratherapeutic levels, ≥25% change in trough/SCr)
  - **B.** If follow-up trough is within expected range, the AUC is likely within range as well
  - C. If follow-up trough is outside expected range, obtain another level to recalculate AUC
  - **D.** Troubleshooting: if a level is missed, draw level with the next dose if at steady state. Otherwise, re-send new paired peak/trough
- IV. Repeat SCr: q1-3 days if hemodynamically stable. Check daily if at high risk of nephrotoxicity.
- V. Can calculate an estimated total daily dose using PK equations (see Part G) or use the table below

| Creatinine<br>Clearance<br>(mL/min) | Dose & Frequency Total body weight (TBW)                                                                                                                                                                       | TDD Range                                                        | Timing of Peak/Trough Levels                                                                                                                                                     |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| > 90                                | 15 mg/kg Q8-12H<br>BMI ≥ 30: 10 – 15 mg/kg TBW Q12H <sup>†</sup><br>BMI ≥ 40: 7.5 – 12.5 mg/kg TBW Q12H <sup>†</sup>                                                                                           | 30 – 45 mg/kg/day<br>Obese: 15 – 30<br>mg/kg <sub>⊤BW</sub> /day | Peak 1hr after 4 <sup>th</sup> / trough 30 min<br>before 5 <sup>th</sup> dose, or Peak 1hr after 3 <sup>rd</sup> /<br>trough 30 min before 4 <sup>th</sup> dose                  |
| 51-89                               | 10– 20 mg/kg Q12H<br>BMI ≥ 30: 10 – 12.5 mg/kg TBW Q12H <sup>†</sup><br>BMI ≥ 40: 7.5 – 10 mg/kg TBW Q12H <sup>†</sup>                                                                                         | 20– 40 mg/kg/day<br>Obese: 15 – 25<br>mg/kg <sub>⊤BW</sub> /day  | Q12H: Peak 1hr after 4 <sup>th</sup> / trough 30<br>min before 5 <sup>th</sup> dose, or Peak 1hr after<br>3 <sup>rd</sup> / trough 30 min before 4 <sup>th</sup> dose            |
| 30-50                               | 10-15 mg/kg Q12H to 20 mg/kg Q24H                                                                                                                                                                              | 20 – 30 mg/kg/day                                                | Q12H: as above<br>Q24H: Peak 1hr after 3 <sup>rd</sup> / trough 30<br>min before 4 <sup>th</sup> dose                                                                            |
| 10-29                               | 10 – 15 mg/kg Q24H to 15 mg/kg Q48H                                                                                                                                                                            | 7.5 – 15 mg/kg/day                                               | Q24H – Peak 1hr after 3 <sup>rd</sup> / trough 30<br>min before 4 <sup>th</sup> dose<br>Q48H – Peak 1hr after 2 <sup>nd</sup> dose;<br>trough 30 min before 3 <sup>rd</sup> dose |
| <10 or AKI*,<br>dose by level       | 15 mg/kg x1, then dose by level                                                                                                                                                                                | N/A                                                              | Trough within 24 hours of last dose, or with AM labs or every other day                                                                                                          |
| Hemodialysis                        | Initial: 15 – 20 mg/kg x 1 (max 2gm)  Maintenance: see appendix E                                                                                                                                              | N/A                                                              | Single pre-dialysis level (preferred)     Alternative: single level 4 hours after completion of dialysis session                                                                 |
| CRRT‡                               | Initial: 15 – 20 mg/kg x 1 (max 2gm)<br>Maintenance: 10 – 15 mg/kg Q24H                                                                                                                                        | N/A                                                              | Trough 30 min before 3 <sup>rd</sup> or 4 <sup>th</sup> dose                                                                                                                     |
|                                     | 10 – 15 mg/kg IV x1, then dose by level                                                                                                                                                                        |                                                                  | Check level 24h after initial dose.<br>Consult ASP                                                                                                                               |
| Peritoneal<br>dialysis              | Dosing for intraperitoneal (IP) instillation (NOT part of protocol) [Li, 2016] Intermittent (1 exchange/day): 15- 30mg/kg IP initially, then dose by level* *supplemental doses may be needed for APD patients | N/A                                                              | Intraperitoneal dosing (off-protocol):<br>Level with AM labs on day 3 after any<br>dose administered (allow fluid<br>redistribution before drawing random<br>level)              |

 $<sup>^{\</sup>dagger}$  Note: For those with CrCL<sub>adjBW</sub> > 120mL/min, Q8H may be considered if  $t\frac{1}{2}$  < 8hr\*\*

- i. SCr change by ≥ 0.3 mg/dL within 48h or 50% from baseline or within last 7 days
- ii. CrCl change by >25 50%
- iii. Urine output < 0.5 mL/kg/hr over 6 hours (oliguria)

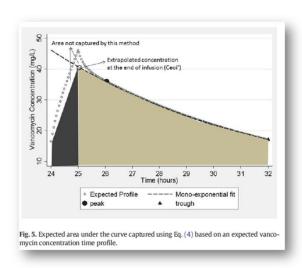
#### \*\*Calculating t1/2 in obesity

| Step | p Equation (adjusted for obese)                           |  |
|------|-----------------------------------------------------------|--|
| 1    | CL vanco = CrCl <sub>adjBW</sub> x 0.06 (see right table) |  |
| 2    | $V_d = (0.5 - 0.7, \text{ see right table}) \times TBW$   |  |
| 3    | $k = CL_{vanco}/V_d$                                      |  |
| 4    | $t\frac{1}{2} = 0.693/k$                                  |  |

| Modified CLvanco            |                |
|-----------------------------|----------------|
| BMI ≥ 40 kg/m <sup>2</sup>  | max CL ~7      |
| Modified Vd                 |                |
| BMI 30-40 kg/m <sup>2</sup> | ~0.7 L/kg      |
| BMI ≥ 40 kg/m <sup>2</sup>  | 0.5 – 0.6 L/kg |

<sup>‡</sup> Loading and maintenance doses are based on 1-2L/hr dialysate flow and ultrafiltration rates, which is estimated to mimic a creatinine clearance of 30-50 mL/min

<sup>\*</sup>AKI (based on KDIGO, RIFLE, AKIN classifications):


### **E: Dose Revisions**

<u>AUC calculator</u>: This calculator is based on the Sawchuk-Zaske method and the equations used are summarized here.<sup>11</sup> Click here for link to AUC calculator on Microsoft Excel.

$$AUC = \frac{t (Cmax + Cmin)}{2} + \frac{Cmax - Cmin}{k}$$

$$t = \text{infusion duration}, \ k = \frac{ln\frac{c_1}{c_2}}{At}$$

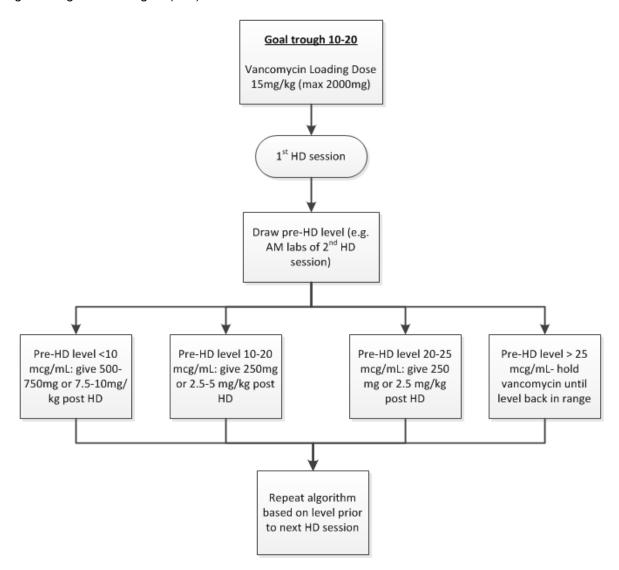
- This AUC value applies to that calculated in a single dosing interval Δt → must be multiplied by the dosing frequency when applicable to obtain the total AUC<sub>0-24</sub>
- Cmax (true peak) and Cmin (true trough) are back-calculated from measured values using this equation:  $C_2 = C_1 \times e^{-kt}$ . (Details are in Part G)



<u>Linear proportion method</u>: Once a calculated AUC or trough is obtained, changes to the total daily dose (TDD) have a corresponding proportional change in troughs and AUCs when maintaining the <u>same</u> dosing interval, **assuming stable renal function and steady state conditions.** 

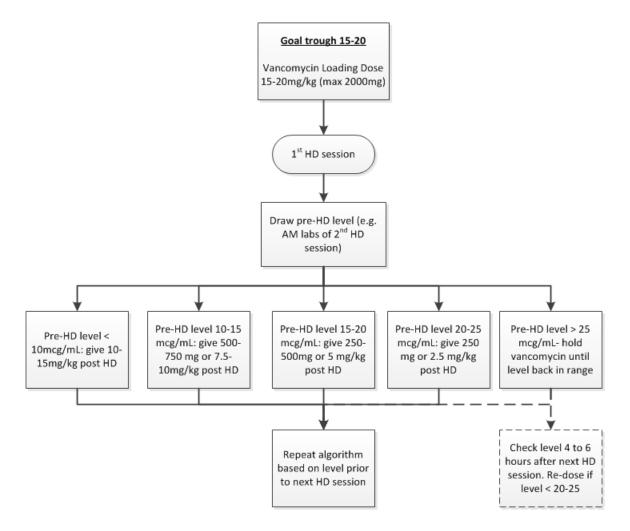
$$\frac{\textit{AUC (calculated)}}{\textit{AUC (desired)}} = \frac{\textit{Current TDD}}{\textit{New TDD}} \qquad \frac{\textit{Cmin (observed)}}{\textit{Cmin (desired)}} = \frac{\textit{Current TDD}}{\textit{New TDD}}$$

E.g.: 1250mg IV Q12H results in an AUC of 800. To target a AUC 600, reduce to 1g q12h (rounded up from 1875mg/day). Alternatively, converting the same TDD to a q8h regimen would result in a higher trough but would not impact the AUC.


New 
$$TDD = \frac{600 \times 2500 mg}{800} = 1875 mg$$

Supratherapeutic levels and/or AKI: general approach

- A. Do not restart vancomycin until the random/trough level is estimated or confirmed to be at/near 10-20 mg/dl. Allow sufficient time for drug clearance before restarting next dose.
- B. Actions may include: pre-emptive dose adjustment, holding dose, checking level, discussion with provider, reassessing the need for vancomycin therapy.
- C. Consider SCr/renal trajectory when determining next dose and/or level
  - 1.Ex) rapidly declining Scr may indicate improving renal function warranting earlier redosing vs. rapidly rising Scr indicating ongoing AKI- dose by level may be indicated


### F: Intermittent Hemodialysis Dosing Algorithms

For goal trough 10-20 mcg/ml (~15):



\*consider dosing 20% higher pre-HD depending on acuity/severity of infection and potential harm/risk from underdosing while awaiting dialysis completion before giving post-HD dose

# For goal trough 15-20 mcg/ml:



\*consider dosing 20% higher pre-HD depending on acuity/severity of infection and potential harm/risk from underdosing while awaiting dialysis completion before giving post-HD dose

## G: PK Equations (same as those used in SHC Vancomycin Excel AUC Calculator)

## **AUC-based dosing: initial dosing**

- 1. Step 1: estimate Cl<sub>vanco</sub> (L/hr)= k<sub>e</sub> x V<sub>d</sub>
  - a. In general populations: Matzke Equation:  $k_e = 0.00083 \times CrCl + 0.0044$
  - b. In obese patients: Crass et al 2018:  $Cl_{vanco}$  = 9.656-0.078 x age 2.009 x SCr + 1.09 x sex + 0.04 x  $TBW^{0.75}$ , where female = 0 and male = 1.
    - i. Reference: doi:10.1093/jac/dky310
- 2. Step 2: estimate total daily dose = Cl<sub>vanco</sub> x goal AUC<sub>0-24</sub>

AUC-based dosing: revision from 2 levels

| Step | Description                                                                                               | Equation                                                                                                                              |
|------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Verify that doses were given on time and drawn appropriately                                              |                                                                                                                                       |
| 2    | Calculate the patient's observed k <sub>e</sub> from 2 levels                                             | $k_e = rac{lnrac{C_1}{C_2}}{t_2 - t_1}$ where C <sub>1</sub> usually is the peak, C <sub>2</sub> is usually the trough              |
| 3    | Calculate half-life, $t_{1/2}$                                                                            | $t_{1/2} = \frac{0.693}{k}$                                                                                                           |
| 4    | Calculate true peak, C <sub>max</sub>                                                                     | $C_{max}=rac{C_1}{e^{-k\Delta t}}$ , $\Delta$ t = time between end of infusion and time level drawn                                  |
| 5    | Calculate true trough, C <sub>min</sub>                                                                   | $C_{min} = C_{max} \times e^{-ke \times (tau - t)}$ where t = infusion time                                                           |
| 6    | Calculate V <sub>d</sub> (steady state conditions) *optional step: not required to determine AUC          | $V_{d} = \frac{Dose \times (1 - e^{-k \cdot t})}{t \times k_{e} (C_{max} - [C_{min} \times e^{-k \cdot t}])}$ where t = infusion time |
| 7    | Calculate vancomycin clearance<br>*optional step: not required to<br>determine AUC                        | $CL_{van} = V_d \times k_e$                                                                                                           |
| 8    | If C <sub>min</sub> is high, calculate the time needed to reach desired range                             | Time for $C_{min}$ to reach $C_{desired} = \frac{ln \frac{C_{min}}{C_{desired}}}{k_e}$                                                |
| 9    | Calculate AUC during infusion using linear trapezoidal rule                                               | $AUC_{inf} = t \times \frac{(C_{max} + C_{min})}{2}$                                                                                  |
| 10   | Calculate AUC during elimination using logarithmic trapezoidal rule                                       | $AUC_{elim} = \frac{(C_{max} - C_{min})}{k_e}$                                                                                        |
| 11   | Calculate AUC <sub>24</sub>                                                                               | $AUC_{0-24} = (AUC_{inf} + AUC_{elim}) \times \frac{24}{tau}$                                                                         |
| 12   | Estimate total daily dose need to achieve target AUC <sub>24</sub> Tip: new tau = 1 to 1.5x the half-life | $New TDD = Current TDD \times \frac{AUC_{0-24} (desired)}{AUC_{0-24} (calculated)}$                                                   |
| 13   | Calculate predicted steady state C <sub>max</sub> for new dosing regimen                                  | $C_{\text{ss,max}} = \frac{New \ dose}{CL \times t} \times \frac{1 - e^{-k \cdot t}}{1 - e^{-k \cdot tau}}$                           |
| 14   | Calculate predicted steady state C <sub>min</sub> for new dosing regimen                                  | Same as step 5                                                                                                                        |
| 15   | Calculate predicted AUC based on new dosing regimen                                                       | Same as steps 9-11                                                                                                                    |

Adapted from Detroit Medical Center: "Vancomycin Dosing in Adults- Clinical Guidelines" Jan 2015 and https://pharmacy.ufl.edu/files/2013/01/5127-28-equations.pdf, accessed June 6, 2018.

### **Abbreviations**

t: infusion time; tau: dosing interval; Ke: elimination rate constant; Vd: volume of distribution;  $C_1$ : concentration at time  $t_1$  (i.e. first of 2 levels drawn following dose);  $C_2$ : concentration at time  $t_2$  (i.e. second of 2 levels drawn following dose)  $t_1$ : time at which  $C_1$  is drawn  $t_2$ : time at which  $C_2$  is drawn  $CL_{van}$ : vancomycin clearance TDD: total daily dose AUC: area under the concentration-time curve AUC<sub>24</sub>: 24 hour area under the concentration-time curve